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ABSTRACT

Analytical studies of the hole-pressure error for non-Newtonian creeping flows over a trans-
verse slot are pursued with particular interest in the theory of Higashitani, Pritchard, Baird and
Lodge (HPBL). To correctly apply the HPBL theory a modified hole-pressure relation (MHPR)
is employed. Some important mathematical properties of the MHPR are presented. By studying
the MHPR in streamline coordinate formulation we find a fortuitous error cancellation phe-
nomnenyn in the derivation of HPBL formula. For second-order fluid and Tanner's "viscometric
model' (under certain assumptions) the error cancellation is proved to be exact. It is this er-
ror cancellation phenomenon that provides a complete theoretical explanation for the paradox
between an apparently flawed derivation and the fortunate success of the HPBL prediction.
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1. Introduction

In this paper we consider shear flow of some liquids between parallel walls which
are at a separation of h. One wall contains a hole whose cross section is a transverse
slot (of narrow dimension w parallel to the main flow direction). There is no net flow
through the hole. A transducer at point a on the bottom of the hole records a normal
thrust Pa = T 22 la, exerted by the fluid. Another transducer mounted flush with the wall
face opposite the hole records a normal thrust Pb = -4221b at a location b on the hole
centerline CL shown schematically in Figure 1, is a well-established experimental procedure
for determining the fluid thrust component normal to a solid wall in the undisturbed shear
flow. For slow flows of Newtonian fluids, it is well known that the two readings, Pa and
Pb, are the same, i.e. no error is introduced by this procedure. But for non-Newtonian
fluids, by contrast, the difference between Pa and Pb can be very substantial as shown both
experimetally and numerically (see, among others, references [1] to [12]). This difference
is called hole-pressure error in the literature and usually denoted as PH, namely

PH = Pb - Pa = -(t221b - T 2 2 1a) . (1.1)

The physical explanation of the existence of hole-pressure error PH can be found in refer-
ences [13,14]. Roughly speaking, the stretching of the N1- spring, as shown in Figure 1,
indicates how an extra tension T along a streamline lifts the fluid out of the hole resulting
in a low reading of Pb. An analytical calculation of the hole-pressure error, PH, was first
made by Tanner and Pipkin [2] for the particular case of slow, two-dimensional flows of
second-order fluids past a transverse slot. They showed that PH is equal in magnitude to
a quarter of the first normal stress difference, N1 , of the fluid.

The hole-pressure problem has been a research topic of considerable interest in recent
years because of the possibility of obtaining elasticity measurements for viscoelastic liquids.
Of particular interest has been the theory of Higashitani, Pritchard, Baird and Lodge
(HPBL) [15,5,6] which leads to expressions relating PH to the shear stress T 12 , the wall
shear stress o, and the first normal stress difference N1 . Based on the phenomenon of
hole-pressure error, Lodge and de Vargas [5] constructed a slit die rheometer using the
hole-pressure difference PH to measure the first normal stress difference N1 for molten
polymers. This application has made it more important to understand the theory behind
the hole-pressure phenomenon, and the hole-pressure problem itself has been proved to be
a highly controversial issue.

The big conflict, that has been puzzling people in this field for many years, is that
although very good agreement between the theory of HPBL and the published experimental
& numerical results has been obtained for several polymer solutions, polymer melts and
some non-Newtonian constitutive models, it has been known that at least two of the
key assumptions in the theory are violated [16]. Some attempts have been made in the
literature trying to correct the flaws in HPBL theory and to explain the paradox, but not
much progress has been achieved so far.
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Figure L Schematic illustration of hole-pressure prob-
lem and definition of streamline coordinate system for pla-
nar flows past a transverse slot.

In order to correctly apply the HPBL theory, a modified hole-pressure relation
(MHPR) in path integral form is used in our work. This MHPR contains an extra term, i.e.
the contribution of the stress gradient - . This term is non-zero in general, accordingh aql
to our numerical observation on the excess pressure rise phenomenon [17], however it
was assumed to be zero and was neglected in the original derivation of HPBL theory.
To investigate the two key flaws of the HPBL theory, we found that it is sufficient for
the present to consider the second-order fluid, since both flaws exist there. By studying
the MHPR based on the streamline coordinate formulation, we found a very fortuitous
and interesting phenomenon behind the success of HPBL prediction : the exact error
cancellation for the second-order fluids, i.e. the error caused by one key flaw can be
exactly canceled out by the error introduced by another key flaw. By using the streamline
coordinate formulation, we are also able to prove analytically the equivalence of the MHPR
with the re-interpreted HPBL prediction. That is, although the two relations have different
forms and contain different terms, the MHPR and the re-interpreted HPBL theory predict
the same exact value of No /4 for the second-order fluid. Furthermore, the conclusion
of error-cancellation has also been generalized to include Tanner's "viscometric model."
These theoretical results enable us to eventually solve the puzzle about the success of
HPBL prediction and to explain the controversy in the derivation of the HPBL formula.

The outline of this paper is as follows. In section 2 we review the HPBL theory,
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some recent work in the literature and the modified hole-pressure relation; in section 3 we
develop the streamline coordinate formulation of the MHPR for a second-order fluid; in
section 4 we prove the exact error cancellation in MHPR for second-order fluid and for
Tanner's viscometric model; finally, in section 5 we discuss our conclusions.

2. The HPBL Theory and Modified Hole-Pressure Relation

2.1 HPBL Theory of Creeping Flow

By considering the equation of motion in streamline coordinate form and making
some assumptions about the flow field, Higashitani and Pritchard (15] deduced a proposed
relation between hole-pressure difference, P 1 , and the first normal-stress difference, N1.
The final relation is attributable to Higashitani, Pritchard, Baird, and Lodge [5,6], and it
has two forms for creeping flow:

academic form

PH ' 1 d7 (2.1)

practical form

d In PH 2 dPg
Nl.= -- or N1 , = 2a, - (2.2)

dlnaw doa.

where a, and Nlw are the values of T 12 and N1 at the channel walls as shown in Figure
1. PH is the hole-pressure difference defined by equation (1.1). The practical form (2.2)
is obtained by differentiating (2.1) with respect to a,. It is important to note that in the

original HPBL formula N 1 & r correspond to the steady unidirectional shear flows only,

and N 1 = vli 2 & 7- = 77j are the strict viscometric functions. However, in this paper
we shall define N as the generalized viscometric part of T1l - t22 for more general flows
which may not necessarily be a unidirectional shear (viscometric) flow.

For convenience of further discussion and reference, the assumptions made either
explicitly or implicitly by Higashitani, Pritchard, Baird and Lodge in their derivation of
equations (2.1) & (2.2) [15,5,6] are summarized as following:

(Al) Incompressible, isothermal, creeping Couette flow (plate-driven) is primarily con-

cerned. (Re is very small)
(A2) The flow patterns are symmetric about the hole centerline CL. Particularly, the

streamlines are symmetric about C, which gives the symmetry conditions

Oql = 0. (i = 1,2) V (ql,q 2 ) E CL (2.3)

(A3) An orthogonal curvilinear coordinate system based on the streamlines of the flow
field can be established in the local area around the hole centerline.
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(A4) The stresses are symmetrically distributed about the hole centerline C, consequently

-= 0 V (qj,q 2 ) E C (2.4)
i8q,

= 0 V(qjq 2 ) E (2.5)
,9q1

(A) The motion at the hole centerline is that of a shear (viscometric) flow. Therefore, the
quantities N1 and t 1 2 in equation (2.1) are the same as the viscometric functions.

(A) The path integral

q 2T 12  1q2 dq2  (2.6)

exists and the change of variable from streamline coordinate q2 to shear stress a
should be valid.

It is known from [17] that the streamwise gradients, -- and -"are non-zero on
even for the Stokes solution of Couette base flow over a slot. Flow visualization [6]

and analytical studies [17] have shown that T11 - t22 is not viscometric on T due to the
existence of slot. These two important facts suggest that the derivation of HPBL prediction
(2.1), especially when it is desired to apply HPBL theory to Poiseuille base flow, is flawed
mainly in two ways:

(i) The assumption of T1 1,1 = 0 on C is incorrect, i.e. the streamwise stress gradient
is in general non-zero. (We will see later on in section 4 that the term T11,1 plays
an important role in the error cancellation.)

(ii) The assumption (A5) is not true, i.e. TiI- '22 is in general not viscometric. There-
fore, the change of variable required in getting the rheological space integral (2.1)
from the path integral (2.6) is invalid. The change of variable requires that TI -T22

can be written as a unique function of r = T'12 (q2). This is not possible in general
as will be seen in equation (3.17). It is also easy to see that the correspondence
between the values of Ti, - i'22 and the values of T 12 is not one to one.

These two flaws have been pointed out by Malkus & Yao in reference [16]. From assump-
tion (Al) we know that only creeping Couette flow is primarily concerned when Higashitani
and Pritchard derived the relation (2.1) in [15]. Since that time, the possibility of applying
relation (2.1) & (2.2) to Poiseuille flow, and to flows with inertial effects, etc. has been
explored both experimentally and numerically in references [5-12,181. There is now con-
siderable experimental and computational evidence to suggest that (2.1) is a reasonably
good approximation to the observations.

Srinivasan, in a recent paper [191, attempted to extend the HPBL theory by including
the inertial effects and the effect of asymmetry in flow field, and the integral was theoreti-
cally evaluated along a generalized path of zero slope of the streamlines (this path may not
coincide with the hole centerline in the most general situation). Unfortunately, although
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Srinivasan recognized that the assumption of (2.5) would be a significant source of error,

he generally accepted the assumption -'9T = 0 in his formlation.

2.2 Tanner's Recent Work - an Alternative Approach

To avoid the paradoxes and problems with the original HPBL analysis, Tanner used
an alternative approach in reference [20] to formulate the hole-pressure difference. In his
work, Tanner made the following fundamental assumptions:

(T1) Assume the fluid is desrcibed by the "viscometric" constitutive equation [21]
1

T= -pI + 7 A + (vl + v 2 )A 2- 1 iB (2.7)
2

where i1(), V(), V2 (j') are functions of .
(T2) Assume that the normal stress coefficient vi is proportional to the viscosity 7(),

viz.

vi = a?7 (2.8)

where a is a constant.
(T3) The following identity

V. [v(B - A 2 )] + V. = V ( + vo N d (2.9)

is used with the postulation that Dr/Dt is small and negligible.

With the above three assumptions, a closed-form solution of the modified pressure can be

obtained, viz.

0 a Dp0  1 2
2 Dt + 2 VI\ j vlfdr) +, 2 P (2.10)

where p0 is the pressure of the generalized Newtonian flow, i.e. the flow that has the same
symmetry as Stokes flow but its viscosity, 77(j},) can be more general. By calculating the
hole-pressure difference directly via. (2.10), Tanner found the formula

1 1 .PH = 1 - vj"7 d y (2.11)

2 J 0

When the flow is in the second-order regime, equation (2.11) gives the well known result
[2]

PH = N 1 /4. (2.12)

Based on this result, Tanner concluded that the HPBL equation is applicable to the hole-

pressure problem, even though when flow is not strictly a viscometric flow assumed in
(T1). Furthermore, Tanner predicted that the Maxwell and Oldroyd-B models, which have

6



constant viscosity and normal stress coefficients in truly viscometric flows, are expected to
show the second-order fluid result (2.12).

Tanner's work is important in verifying and supporting the conclusion about the
validity of the HPBL theory from an alternative approach. But his work did not directly
resolve the paradoxes and the problems in the derivation of HPBL theory.

2.3 Modified Hole-Pressure Relation (MHPR)

If one goes through the details in deriving equation (2.1) by following the way described
in [15], one would find that the equation in streamline coordinates which is integrated along
the hole centerline to give the thrust difference, PH, is not

0'1 272'12 8T22
22 =0 (2.13)aq2 l t1--22 aq2

but
1 9'T11  1 0T 12  2 T 2  192'22

hi Oql h2 Oq2 h2 t 11 -'22 9q2

where Tij are the physical components of stress in streamline coordinates and hi are the
metric coefficients. The first term in (2.14) is the contribution of the streamwise stress
gradient. It is assumed to be zero in the HPBL theory by assumption (A4). If we leave
the stress gradient term in (2.14) and continue the derivation, we will get a modified
hole-pressure relation [16]

pH fq'(O2l 1 at12 ) 11I-t22PH= + Tq2 22h 2 dq2  (2.15)

q~\ hi aq, h2 Nq2  2T12

which looks quit different from the HPBL predition (2.1). (2.15) is in path integral form
and contains an extra term, while (2.1) is an integral in the rheological stress space. Since it
has been known that the HPBL prediction (2.1) is quite successful for some non-Newtonian
fluids, and it also seems to work even under less restrictive assumptions [5,6,17,18,24,25],
the questions which arise are: What is the relation between MHPR and HPBL predic-
tion? How does the MHPR (2.15) work? Does (2.15) predict the same result as the
HPBL theory? We shall try to answer these questions in the following sections.

2.4 Some Mathematical Properties of MHPR

We have skipped over some important details in getting the path integral (2.15) from
(2.14). We need to look into the derivation more deeply and try to define the MHPR
rigorously.

After considering the symmetric conditions (2.3) & (2.4), the equations of motion are
simplified as follows 1 08,1 1 8T 2 2T Ohi o'

- ++ - 0, I2(2.16)
hi 8q, h 2 8jq2 hh 2 5q2
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Figure 2. An example of the possible change of shear stress T 12 on
the hole centerline C for a Poiseuille base flow of second-order fluid over
a slot (De Pz 0.2). Note q2 = 0 is the center of channel.

1 ahI  1 aT 22

h I 9q2 tiI - T 2 2 &q2  (2.17)

To obtain (2.15), we eliminated 8hl/8q 2 from (2.16) & (2.17), multiplied both sides of
(2.14) by h 2(Tll - T22)/2t 12 , and then integrated it on C. By doing this, we have intro-
duced singularities to the path integral of MHPR, because T 12 can be zero at some places
on C. Figure 2 shows an example of the possible change of t 12 on C for a Poiseuille flow
of second-order fluid. We can classify the places where T 12 = 0 into two different cases: a
closed interval such as the part [q2, q2'] shown in Figure 2; or some isolated points, like
the points q2*, (i = 1,2) in Figure 2. These two cases need to be considered separately
and the results are given in the following two propositions.

Proposition 2.1 For incompressible, steady, creeping, 2-D flows over a slot (Re = 0),
if the shear stress TI2  0 on a closed interval [q , q'] of C, then the hole-pressure difference
between qI and q2' is zero, i.e.

PHlq2-q2' = -(221q2' -T22lq)

q"' (atj 1 T 2  T1 - 2  (2.18)12 Khl 8q 2  tl t22 h2 dq2 =0.
hIt 1_ _h2 j

Proof: Since T 12  0 on [q",qa'], we have a"" + - a2 = 0 on [qaq"] according
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to (2.16). This immediately leads to the result in equation (2.18).
Proposition 2.2 Let q* be an isolated point on C where T12 = 0. Assume til and t 12

are C2 at point q*. Then the integrand of (2.15) has only a removable singularity at q2 and its
limit at q* exists.

Proof: t12 = 0 at q2 implies that

1 OT, 1 8T12+ - 0 at q*
hi ,q, h 2 0q2

from equation (2.16). Do the Taylor series expansion in the vicinity of point q2, we obtain

1 T11  1 'a12 0 (1_8T 11  1 t12  nq2_{_O(,Aq212 )

h i  &q1  h 2  q2  Nq2  hi 9q, h 2  2q2  *

Ti1- 12)
t 2 I; Aq2 + O(IAq212)

where Aq2 =q2 - q2. Substitution of the above two equations into the integrand of (2.15)
gives

lim ( 1 0' + 1 at12 '1l-i;22

q2-q2\ hi 9q, h 2 "q2 2T 12 (2.19)
a a1t, 1 012 at 2012)- T 2 ); AI(.9

caq2 l hi aq, h2 Nq2 )/ )2 2N 2 T1 2)2 !

where constant Al is a finite real number. 0

Remark: Since the singularity of the integrand of (2.15) is removable at the isolated
pole q2, the integrand will become a continuous function at q2 if we define its value to be
its limit (2.19). In this way there will be no real singularity involved in the MHPR and
the path integral (2.15) can be well defined. Based on Propositions 2.1 and 2.2, one can
directly prove the following proposition regarding the existence of MHPR path integral.

Proposition 2.3 Assume t'1 and t 1 2 be C2 continuous. Assume t 1 2 = 0 on [q', q']
and at some isolated points q'i (i = 1, 2,. .. ). If we interprete the path integral of MHPR (2.15)
as

(1 Iq'b 'tl 1 atU 1  1 -!t22__
PH11- 22h 2 dq2  (2.15a)

q4 hi Oql h 2 0q2 2T 12

where the values of integrand at the removable poles q2 , q2', (i = 1,2,.. ), should be replaced

by its limits (2.19), then the path integral (2.15) exists and is finite.

Remark: In practice, it may not be necessary to assume as much smoothness as we

have to obtain the same results. For example, the C 2 continuous condition for t 12 & t71
assumed here may be replaced by some weaker assumption if the distribution theory is

used.
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Finally, as pointed out by Higashitani & Pritchard in [15], the path integral in (2.15)
may pass through some points, such as the center of a vortex, at which the streamline
coordinate system is not well defined. The path integral should then be carried out in a
piecewise manner.

3. Formulation of the MHPR for a Second-Order Fluid

In this section we shall confine our attention to the slow flows of a second-order fluid
and try to formulate analytically the MHPR in terms of the Stokes solution. First it is
worth noting that the MHPR path integral in equation (2.15) is based on the streamline
coordinate system; the stresses involved are the physical stress components in streamline
coordinates and O/q is the streamwise derivative. An important fact we will use in our
development is that for the assumed symmetric velocity field the streamline coordinate
systems on E are orthogonal curvilinear systems (by assumptions (A2), (A3) in section 2
and by choosing the q2 axis properly), and these systems coincide with the local rectangular
Cartesian coordinate systems. As defined in reference [22], the physical components of a
vector or second-order tensor at a point P relative to a system of orthogonal curvilinear
coordinates are simply the Cartesian components in a local set of Cartesian axes tangent to
the coordinate curves through P. Any tensor equation involving only tensor values at one
point and no derivatives with respect to the coordinates has the same form in terms of the
physical components in orthogonal curvilinear coordinates as it has in terms of rectangular
Cartesians. However the constitutive equation we are going to consider here does involve
derivatives with respect to the streamline coordinates. Accordingly, we need to work on
differentiations with respect to orthogonal curvilinear coordinates.

3.1 Formulation of Stress

By the Tanner-Giesekus theorem, the Stokes solution for the velocity, ii, with a mod-
ified pressure, p, satisfies the second-order fluid equations [14,15,23]. The resulting stress
field is

T=[p - T(fipo1 + fi2p, 2)] I + 7A
-~ _TB-A 1 .2

-i 7T(B - A - I) + 7 T*(A2 _ "2I) (3.1)

where A and B are the first two Rivlin-Ericksen tensors; q/, T and T* are the constants
of the second-order fluid expansioli, fi and p0 are the velocity and pressure fields of Stokes
flow, and i2 = trA2 /2.

Define the streamline coordinate system as shown in Figure 1. Particularly, we can
choose

q, = ql(x 1,x 2 ), q2 = X2 (3.2)

h = hI(qj,q 2 ), h2 = 1 . (3.3)

From the symmetry assumption of the flow field, it is not difficult to prove the following
symmetry conditions:
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(a) The qi-component of velocity, i I(qj, q2), is an even function of qj, consequently

1 Oi 1
-= 0 on C (3.4)h, aq,

(b) There is no flow across the streamline, i.e.

f12 -0 V(qj,q 2) E f2 (3.5)

(c) p0 (ql, q2) is an odd function of qj, viz.

p 0 = 0 on L (3.6)

(d) t 12 (ql, q2) is an even function of q,

1 &T12
-= 0 on C (3.7)

h i 9q,

(e) The derivatives of scale factors are

h 0, Oh - unknown $ 0 (3.8a)
0ql 0 q2

O 2  0 , Oh2 = 0 (3.8b)

q - aq.

By applying equations (3.4), (3.5) and (3.8), we have the strain-rate tensor on

A = 2D 0 (3.9)

where is the shear strain rate and defined by

0l u1  (. Oh0
h 2 q2  hih2 Oq2  (3.10)

Hence we have

A 2 = 2 (3.11)

The material derivative of A is reduced to

DA 'fl h .; hi. h2 a72 af h (3.12)-D-A- = F1 02a  i
1 t0 - h-- ".9q_'J hi hh2 aq2

In getting (3.12), the following relation is used

02h2 2 2

h1h 2 Oq - hi Oq on (3.13)
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which can be verified by differentiating the continuity equation. The convective term is

A0 0 _ (3.14

hi 9q2
141 h, 

aq2

Using (3.12)-(3.15) we obtain the second-order Rivlin-Ericksen tensor on

B= 2 [h, 18 2 isi +2 (3.15)

I2 8q I
Inserting (3.9)-(3.11), (3.15) into (3.1) yields the physical components of Cauchy stress
tensor on C

AL 0.p0\ 3 0

-21T h 2 .92-. 8 2 + 2r 7T 0 L 2 (3.16)

From equation (3.16) we can obtain some important results:

I. On T, the physical stress components

ti 2 = 7717 aL iILh
Uh 2 8q 2  h 2 =hq2  ( .7

t, - =2177T 2 2 -N-q- N,- 477Th2 J

(.2 1 ~ 12 i a q 2 3. 7

]I. The hole-pressure error

PH = 4-22q, = qr1 T(j )2 - N 0_/4 (3.18)

where 0o and Now are the values of disturbed j and N, at wall & C opposte to the slot.
It is necessary to make the following comments before we proceed further.

(1) The numerical results show that the streamwise derivative, 02 11 /oq 2 , is non-zero
on (. Therefore, the last equation in (3.17) indicates that the flow is not strictly
viscometric, owing to the disturbance induced by the slot. Consequently the as-
sumption (A5) in the original HPBL theory is inappropriate.

(2) For second-order fluid under the symmetry conditions, the shear stress on E has
the same fo: in as that in viscometric flow, the flow is locally shear flow and 4
is the usual shear strain rate on E. However the shear flow on ( may not be
unidirectional.
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(3) The notation N, in the last equation of (3.17) has different meaning from convention
and here N 1 5 T1 1 - t 22 unless the flow is strictly viscometric. In this paper we

define the first part in the last equation of (3.17)

N1 = V1 2  (3.19)

as the generalized viscometric part of T11 - t 22. We call it the "viscometric
part" because it has the same form as the conventional viscometric function in
the unidirectional shear flow. Note that even when flow is symmetric, T11 - t22

still may not be the same as N, in the viscometric base flow because in general
a 2 f/&q 2 #A 0 on C.

(4) Result I applies when the depth of pressure-hole, d, is deep enough. This will be
the case for d = oc and approximately so for d > w.

(5) It is known that in general N' y- N1 , for a given flow field. Strictly speaking,
for second-order fluid the correct hole-pressure error should be N' /4 as given by
(3.18) and the HP result of (2.12) is only an approximation. However the results
(2.12) and (3.18) give only a slight difference in the predicted values of PH for a
given flow field (see item (8), below).

(6) In order to make the HPBL prediction be consistent with the directly-calculated
values of PH, we define the re-interpreted HPBL formula as

P H = w -- dr (2.1')

where a w0 is the disturbed wall shear stress at point q6 shown in Figure 1. In (2.1')
the original HPBL formula (2.1) is re-interpreted in two places: first a. is changed
to o; second N, represents the generalized viscometric part of Tnl - t22. Note
that the original HPBL prediction (2.1) is actually an approximation for the re-
interpreted formula (2.1'). (2.1') is precise in theory and (2.1) is convenient for
application.

(7) The slight difference between (2.1') and (2.1) does not affect the application of
HPBL theory. (2.1) and (2.1') lead to the same differential-form NI-PH relation.
As a matter of fact, differentiating bothsides of (2.1') with respect to a w yields

No = 2a . (2.2')
Wa daW

here we use PH(a° ) to emphasize that PH is a function of a. It is easy to see, by
comparing (2.2') with (2.2), that once we obtain the differential relation between N,
& PH, either in the form of (2.2) or (2.2'), and apply the relation in the rheological
space, the values of a,,, & ao0 in (2.2) & (2.2') become unimportant, they only
correspond to two neighboring points on the T12-axis in the rheological stress space
and hence they can be simply replaced by a dummy variable, say, a or r. Therefore
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(2.2) and (2.2') actually represent the same N1-PH relation in the rheological stress
space and we can simply rewrite them as

dPH
N1 = 2ad (2.2")

Obviously, (2.2") is the more general differential-form expression for the NI-PH
relation in the rheological stress space, and (2.2) & (2.2') are two special cases for
(2.2") when a takes the values of a, & 0w7 respectively.

(8) (2.2") is only useful for theoretical analysis. In practice the values of a'° (or -o)
are not available experimentally and some approximation has to be made. Usually
the following combination of (2.2) and (2.2') is employed, i.e.

Nlw 2a d P g (a ° )
dHo, (2.2"')

where aw is the undisturbed wall shear stress, while PH(aow) is the measured hole-

pressure depending on ao. (2.2"') is a good approximation for (2.2") or (2.2') if
law - a is small. According to Malkus & Webster [17] law -ao°I can be minimized
by proper die design with hiw > 1. The full instrument simulation results presented
in [17] also show that the difference by using either a,, or aw0 in predicting N 1 is

rather small.

3.2 Formulation of Streamwise Stress Gradient 8T_,,h, Oq,

The general expression of t2i is given by equation (3.1). We need to differentiate T1
with respect to streamline coordinate q1. Reader is referred to reference [17] for the details
of formulation. Here we just simply present the final expression of the streamwise gradient

1 at, l 1 0p°  1 a2ftl
hi (9q , - hi ql + 2t'7 h q . on (3.20)

1 1

4. Error Cancellation - A Fortuitous Phenomenon

In order to make a distinction between the modified hole-pressure prediction defined
by (2.15) and the original HPBL prediction, we shall use PH to denote the MHPR and

reserve PH for the original HPBL prediction given in (2.1). With new notations, (2.15)
can be re-written as

PH= P H+PJ (4.1)

where

P- T 21 2 h2dq2 , (4.2)

H Iq; 2T 12  hi Oqi h2 dq2  (4.3)
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It is easy to see that Pk is the path integral corresponding to the original HPBL prediction
PH (but they are not equal, we will see it later) and PH is the streamwise stress gradient
term neglected by the HPBL theory.

In reference [12], Baird et al. reported their observation on some partial-cancellation
of the HPBL integral (2.1) itself. They suggested that the success of HPBL prediction was
attributed to the cancellation of certain contributions to the integral in (2.1) until reaching
the (channel) centerline at which point one obtain just the contributions from viscometric
flow (p. 6 4 2 [12]). We believe that their picture was incomplete. By studying the MHPR
based on the streamline coordinate formulation and the two key flaws of the HPBL theory,
we found a more important error cancellation phenomenon in the derivation of the HPBL
prediction, i.e. the error caused by neglecting the stress gradient term, 1 '-" can be
canceled out by the error introduced through the viscometric flow assumption (A5). By
using the streamline coordinate formulation, we can prove that this error cancellation is
exact for the second-order fluid. Furthermore, the conclusion of error cancellation is also
generalized to include the viscoelastic liquids described by the viscometric constitutive
equation (2.7).

4.1 Basic Results for Second-Order Fluid

In order to show the exact error cancellation in MHPR for the second-order fluid, we
need some primary results to proceed.

Proposition 4.1 For incompressible, steady, creeping flows over a transverse slot, the
hole-pressure difference

- T22oq, -do",= No /4

PH = -(T221,b N2Ia = /W
22J 2o,

is exact for the second-order fluid. Here N1 is interpreted as the generalized viscometric part of

t1 - T22 , i.e. N, = Vl 2 .

The proof of Proposition 4.1 has already been given in the formulation in section 3.
Proposition 4.2 Let p0 be the pressure of Stokes solution. The following relation

1 9p0  217 a 2 fI1 2t 12 o1I  1 aT12
2 + -(4.4)hi 1 oq h2 q h1h2 8oq2  h2 q4

holds on the hole centerline L.
Proof: Since p0 is the pressure of Stokes solution, the equation of motion gives

Vp =7 V. A (a)

where A = 2b, and the components of V. A can be obtained by replacing 1T with A in
equation of motion. The first equation of (a) becomes

o7 (h 2A1 ,) + (h2A2 )+ 2lh 1 - h (b)
h, aq, =~h TI Oql ik"2'15 A1 2  09q

15



By using the symmetry conditions (2.8), (b) can be easily reduced to (4.4). <
Proposition 4.3 For second-order fluid, we have

PH' = No /4- p (4.5)

where

H= 27TJqa h2 OqT 1  q2 dq2. (4.6)

Proof: Substituting (3.17) into (4.2) yields

P - fa(Ni 4?l02U) q272'12 0'12 dq2

q 
b

rI fil a2fl, 1 at 2

H= N,1- 47T h q2(q dq2

/ 2i~- 2 -d 2  21
-' 277T dq2 -q2 217T- 1 T-1 dq2

=2tT(o)217 N =2N /4_ P aq

Remark : Note that PH can be considered as the error term introduced by the
viscometric flow assumption (Ah). According to our numerical results, P' is in general
non-zero. Therefore Proposition 4.3 indicates that in general PH' 5 N' /4 and the error
included in PH' term comes from the viscometric flow assumption.

Proposition 4.4 For the second-order fluid, we have
P' = No / 4 - P' (4.7)

Proof: By using (3.20) and (4.4) in (4.3)

qb

p H2 2 1 ap + 2,7 2 fil T11 - T22 h2 dq2

2 hl 8q- h OqI ) 2T 12

fq 2 ( 2T1 2 Oh 1  1 aT 1 2 \ ti I- t2 2 h2 dq2

JqG h1h2 9q2 h 2 aq2) 2'12

- l -h(T 1 1 - T22 )dq2  PH
aq2" hi Oq2

= _['" a2=dq2 - PH = No /4 - PH

where equation (2.17) and Proposition 4.1 have been used. <>

Remark : Keep in mind that P4 is actually the error term caused by neglecting the

streamwise stress-gradient, A_ qi. Proposition 4.4 tells us that for second-order fluid the
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MHPR predicts the same result as the HPBL theory, namely, PH = PH' + PH2 = No/4=
PH.

Based on Propositions 4.3 & 4.4 we can easily prove the following proposition regarding
the exact error cancellation in the MHPR for the second-order fluids.

Proposition 4.5 For incompressible, steady, creeping flows of the second-order fluids
over a transverse slot, we have the following relation

P 2= PH. (4.8)

Proof: By simply combining Propositions 4.3 & 4.4. 0

Remark : The result presented in Proposition 4.5 is interesting and important. It
concludes that for second-order fluid the error caused by one key flaw in the original HPBL
derivation is exactly equal to, hence is exactly cancelled out by, the error introduced
through another key flaw. In order to make this point more explicitly we rewrite (4.1) in
the following form:

PH = PH' + PH2 = No /4 -P3 + P2 = PH.

=0

This fortuitous error cancellation phenomenon has been unfortunately hidden behind
the success of the HPBL prediction for a long time, and now it eventually becomes clear
to us. Based on Proposition 4.5 the following conclusion can also be drawn, namely:

For incompressible, steady, creeping flows of the second-order
fluid, the MHPR in path integral form, (2.15) is equivalent to the
re-interpreted HPBL prediction in stress integral form, (2.1'), due
to the exact error cancellation.

4.2 Generalized Results for the Viscometric Model

Having obtained the basic results for the second-order fluid, we now turn to the fluids
described by the viscometric constitutive equation (2.7), and try to generalize the error
cancellation theorem to include more fluid models. Similar to the case of second-order
fluid, we begin by presenting some generalized results for the viscometric model.

Proposition 4.6 For the viscometric model described by (2.7), the physical stress
components on the hole centerline 4 are

f, I 2fl (.9T12 I -P + (I+ V2 h q
1 1

T2=- 2 0 ,fl 2f (4.9)

+h2 q2
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where fil, etc. is now the generalized Newtonian solution associated with 7(l).
Proof: Simply inserting (3.9), (3.11) and (3.15) into (2.7) directly gives the above

results. 0

Remark : (i) It should be borne in mind that q, V1, v2 are generally functions of

y. When 77 = constant, vi = 2r7T and v2 = -77T/2, (4.9) reduces to the second-order
fluid result (3.16) & (3.17). (ii) Although equation (2.7) is called "viscometric" model,
the stresses still may not be viscometric due to the disturbance of the slot, as one can see
from (4.9). When flow is not viscometric, vi is only the viscometric part of the first normal

stress coefficient.
Proposition 4.7 For the viscometric model under Tanner's assumptions (Ti) to (T3),

the hole-pressure difference can be expressed as

40

PH No - vd-y. (4.10)

Proof: From (4.9) and (2.10) we have

T221q, = -p°(O,q*)
V1 2 1( Yi d (c)

T2 2 1qA = -p*(0,q2) - - (io) + i j (c

Noting p'(0, q2) -- 0 on T, (4.10) can be immediately obtained. 0

Remark : (4.10) was first given by Tanner in [20]. As a matter of fact, (4.10) has
another equivalent form.

Proposition 4.8 For the viscometric model under Tanner's assumptions (TI) to (T3),

the Tanner's result (4.10) can also be written as the following equivalent form:

PH= 0W + -c i2d77(Y). (4.11)

Proof: Integrating (4.10) by parts yields

11 lo

PH=-No I0 o)2+- v
2 4t 4 t  4J

where v, = a77. On the other hand, integrating (4.11) by parts gives (4.10). 0

Next, we prove that results (4.10) and (4.11) are equivalent to the re-interpreted HPBL
prediction (2.1').

Proposition 4.9 For the viscometric model under Tanner's assumptions (TI) to (T3),

the Tanner's hole-pressure difference results (4.10) and (4.11) are equivalent to the re-interpreted
HPBL prediction (2.1'), when N1 in (2.1') is interpreted as only the viscometric part of Ti -t22.
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Proof: Substituting N1 = arj9, a = r7- into (2.1')
CI . 09

° ° oa 7d2= j -a 7 7
2 &(.O 2 1j0~d

which gives (4.10). On the other hand, by using the following relations
• 0 .0

'No -I d( Cr1 2) = a + 2 ,i$d) (d)

4t 4 4 j

, da= (2 
2 dr + iy dj) (e)

in (4.11) we can obtain (2.1'). 0

Now it is the time to consider the MHPR for the viscometric model. To proceed, it is
essential to have the expression for stress gradient.

Proposition 4.10 For the viscometric model under Tanner's assumptions (T1) to (T3),
the streamwise stress gradients on hole centerline C are

lop lapo

hI O1ql hi 9ql 4.2
1 T,, 1 p °  1 2 (4.12)

hi aql hi h I2 7
h1 0q1 h1 8q h1 q1

where p is the modified pressure given by (2.10) and pO is the pressure for the generalized
Newtonian flow.

Proof: Differentiating (2.10) with respect to qi yields

10p I opO a 0 fiOP + a V 1 /2+ V2i2 1 t

h q, = h 0aq, 2h 1 Oql kh Oqi " h Oq- 2 f 0

Keeping in mind that fil, hi, j, po/,Oqi are even functions of q, on (E, consequently the

last two terms in above equation are all zero. Then the derivation of - a't 1 is similar as

in the second-order fluid. 0

Remarks : Comparison of (4.12) with (3.20) tells us that the streamwise stress

gradient of the viscomertic model is the same as that of the second-order fluid. Therefore,

the proof of the error cancellation theorem for the viscometric model will be very similar to

that of second-order fluid. Since we have assumed that the velocity field for the viscometric
model (2.7) are the same as the generalized Newtonian flow field, Proposition 4.2 is still
useful, while Propositions 4.3 & 4.4 need to be slightly modified as follows.
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Proposition 4.11 For the viscometric model under Tanner's assumptions (TI) to (T3),
we have the following results for the path integral of MHPR

P = No/2 - j vld - P3 (4.13a)

= N1W/2- j v4dj - PH (4.13b)

H (4.13c)

where
P2 f, 92 l f, I T12 dq2 . (4.6a)

q2 I aq t 12  q2 d

The proof of Proposition 4.11 is straightforward and has been omitted here. On the

basis of Proposition 4.11, one can easily prove the following result regarding the equivalent

expressions for PH.
Proposition 4.12 For incompressible, steady, creeping flows of the viscometric model

(2.7) with Tanner's assumptions (Tl)-(T3), there are four equivalent expressions that predict the
hole-pressure error, PH. They are the MHPR (2.15), the Tanner's results (4.10) & (4.11), and

the re-interpreted HPBL formula (2.1').

Remarks : From section 2 we know that the MHPR is derived from the equations of

motion, without any assumptions on the fluid model. Therefore (2.15) is model indepen-
dent and hence the more general expression for the hole-pressure error. For the viscometric
model, all the other three relations can be derived from the MHPR under the Tanner's
assumptions (T1)-(T3). It is also easy to see that when q, v, =constant, all the four
expressions give the same result PH = No /4.

5. Conclusions

The correct application of the HPBL theory in the hole-pressure problem involves
the modified hole-pressure relation (MHPR) in path integral form. Some important
mathematical properties of the MHPR, such as the singularities and the existence of the
path integral, were studied.

To investigate the two key flaws of the HPBL theory, it is sufficient to consider the

second-order fluid. By studying the MHPR in terms of the streamline coordinate for-
mulation, we found the fortuitous phenomenon of error cancellation in the derivation of
HPBL formula. For second-order fluid and Tanner's viscometric model under certain as-
sumptions, we have proved analytically that the error cancellation is exact and the MHPR

is equivalent to the re-interpreted HPBL prediction. We also proved that there are four
equivalent expressions that predict the same hole-pressure error PH for Tanner's visco-

metric model. The theoretical results of this paper provided a complete explanation for
the fortunate success of the HPBL prediction and the controversy in the derivation of the

HPBL formula.

20



6. Acknowledgement

The authors are grateful to A. S. Lodge for many helpful comments. Financial support
was provided by the Air Force Office of Scientific Research under Grant AFOSR-85-0141,
the National Science Foundation under Grants DMS-8712058 & DMS-8907264 and the
UW-Madison Graduate School Research Fund under project numbers 891533 & 900379.

REFERENCES

[1] Kaye, A., Lodge, A.S. and Vale, D.G., Determination of normal stress differences
in steady shear flow, I. Flow birefringence, viscosity, and normal stress data for a
polyisobutene liquid, Rheol. Acta, 7 (1968) 368-379.

[21 Tanner, R.I. and Pipkin, A.C., Intrinsic errors in pressure-hole measurements, Trans.
Society of Rheology, 13:4 (1969), 471-484.

[3] Broadbent, J.M. and Lodge, A.S., Determination of normal stress differences in steady
shear flow, 11. A wide-gap concetric cylinder apparatus, Rheol. Acta, 10 (1971) 557-
573.

[4] Pritchard, W.G., Phil. Tans. Roy. Soc. London A., 270 (1971) 507.
[5] Lodge, A.S. and Vargas, L.de, Positive hole-pressures and negative exit pressure gen-

erated by molten low-density polyethylene flowing through a slit die, Rheologica Acta
22 (1983), 151-170.

[6] Pike, R. D. and Baird, D. G., Evaluation of the Higashitani and Pritchard analysis
of the hole pressure using flow birefringence, J. Non-Newtonian Fluid Mech. 16
(1984), 211.

[7] Jackson, N.R. and Finlayson B.A., Calculation of hole pressure: I. Newtonian fluids,
J. Non-Newtonian fluid Mech., 10 (1982) 55-69.

[8] Jackson, N.R. and Finlayson B.A., Calculation of hole pressure: II. Viscoelastic fluids,
J. Non-Newtonian fluid Mech., 10 (1982) 71-84.

[91 Richards, G. D. and Townsend, P., A finite element computer model of the hole-
pressure problem, Rheol. Acta 20 (1981), 261-269.

[10] Webster, M.F., The hole-pressure problem, Rheologica Acta, 23 (1984), 582-590.
[11] Lodge, A.S., Newtonian liquid hole pressures at small Reynolds numbers, J. of Rhe-

ology, 27(5), (1983) 497-501.
[12] Baird, D.G., Malkus, D.S. and Reddy, J.N., Comparison of flow birefringence results

with numerical simulation of the hole pressure, Proceedings IX Intl. Congress on
Rheology, Mexico, (1984) 641-646.

[13] Pipkin, A.C. and Tanner, R.I., A survey of theory and experiment in viscometric
flows of viscoelastic liquids, Mechanics Today. Vol. 1, edited by S. Nemat-Nasser,
Pergamon, 1972, 262-321.

[14] Bird, R.B., Armstrong, R.C. and Hassager, 0., Dynamics of Polymeric Liquids,
Vol. 1 Fluid Mechanics, 2nd edn., John Wiley & Sons, (1987).

[15] Higashitani, K. and Pritchard, W.G., A kinematic calculation of intrinsic errors in
pressure measurements made with holes, Thans. Soc. Rheology 16 (1972), 687-696.

21



[16] Malkus, D.S. and Yao, M., On hole-pressure in plane Poiseuille flow over transverse
slots, Mathematics Research Center Technical Summary Report # 2943, Mathematics
Research Center, Univ. Wisconsin-Madison, (1986).

[17] Yao, Minwu, A numerical and analytical study of normal stesses and pressure dif-
ferences in non-Newtonian creeping flows, Ph.D. Thesis, University of Wisconsin-
Madison, Wisconsin, U.S.A. (1989).

[18] Malkus, D.S. and Webster, M.F., On the accuracy of finite element and finite difference
predictions of non-Newtonian slot pressures for a Maxwell fluid, J. Non-Newtonian
Fluid Mech., 25 (1987), 93-127.

[19] Srinivasan, R., The hole-pressure problem: on the Higashitani-Pritchard theory for
transverse and axial slots, Rheologica Acta, 26 (1987), 107-118.

[20] Tanner, R.I., Pressure-hole errors - an alternative approach, J. Non-
Newtonian Fluid Mech., 28 (1988) 309-318.

[21] Tanner, R.I., Engineering Rheology, Clarendon Press. Oxford, 1985.
[22] Malvern, L.E., Introduction to the Mechanics of a Continuous Medium, Prentice-

Hall, (1969).
[23] Lodge, A.S., Elastic Liquids, Academic Press, New York, (1964).
[24] Sugeng, F., Phan-Thien, N. and Tanner, R.I., A boundary-element investigation of

the pressure-hole effect, J. Rheology, 32 (3) (1988), 215-233.
[25] Lodge, A.S., Chapter 11 in Rheological Measurement, edited by Collyer Clegg,

Elsevier (1988).

22


